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A soon to be published guidelines document for the design of seismic retrofits
for existing buildings is based on performance-based design principles as
implemented through so-called nonlinear static procedures (NSPs). In these
procedures, the global inelastic deformation demand on the structure is computed
from the response of an equivalent nonlinear single-degree-of-freedom (SDOF)
system, the response of which is estimated from that of an elastic SDOF system.
The guidelines were developed as part of the ATC-55 project, which is
summarized by Comartin (this conference). The objective of the present paper is
to describe one component of the ATC-55 project related to the implementation of
soil-structure interaction (SSI) principles into NSPs. SSI effects are most
important at short periods (i.e., 7" less than approximately 0.5 s). Three SSI
phenomena can contribute to NSPs. First, flexibility at the soil-foundation
interface can be incorporated into nonlinear pushover curves for the structure.
These foundation spring models were incorporated into NSPs that pre-existed the
ATC-55 project, and are not emphasized here. Second, SSI affects demand spectra
through the effective system damping, which is the damping ratio for which
spectral ordinates should be calculated. Third, kinematic SSI reduces ordinates of
the demand spectra. This paper describes how damping and kinematic SSI effects
have been incorporated into the recommended seismic analysis procedures for

existing buildings.
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1.0 INTRODUCTION

In this paper we present simplified procedures for including the effects of interaction
between a structure and the supporting soils in nonlinear inelastic seismic analyses. The
procedures described here were developed as part of the ATC-55 project and will be formally
presented in FEMA-440 (2004).

There are three primary categories of soil-structure interaction (SSI) effects. These
include: introduction of flexibility to the soil-foundation system with resulting lengthening of
the system’s fundamental response period (flexible foundation effects); filtering of the
character of ground shaking transmitted to the structure (kinematic effects); and dissipation
of energy from the soil-structure system through radiation and hysteretic soil damping
(foundation damping effects). Current analysis procedures in FEMA 356 (2000) and ATC 40
(1996) partially address the flexible foundation effect in guidelines for including the stiffness
and strength of the geotechnical components of the foundation in the structural analysis
model. However, those procedures do not address reduction of the shaking demand on the
structure relative to the free field motion due to kinematic interaction or the foundation
damping effect. Guidelines on including those effects in nonlinear inelastic analyses were
introduced in FEMA-440 and are summarized here. More detailed information can be found

in Appendix 8 of FEMA-440 (2004).

2.0 KINEMATIC INTERACTION EFFECTS

Kinematic interaction results from the presence of stiff foundation elements on or in soil,
which causes foundation motions to deviate from free-field motions as a result of base slab
averaging and embedment effects. The base slab averaging effect can be visualized by
recognizing that the motion that would have occurred in the absence of the structure within
and below the footprint of the building is spatially variable. Placement of a foundation slab
across these variable motions produces an averaging effect in which the foundation motion is
less than the localized maxima that would have occurred in the free-field. The embedment
effect is simply associated with the reduction of ground motion that tends to occur with depth

in a soil deposit.

This section covers simple models for the analysis of ground motion variations between
the free-field and the foundation-level of structures. In general, these models must account

for base slab averaging and embedment effects. Kinematic interaction for pile-supported



foundations is not covered. Theoretical models for kinematic interaction effects are
expressed as frequency-dependent ratios of the Fourier amplitudes (i.e., transfer functions) of
foundation input motion (FIM) to free-field motion. The FIM is the theoretical motion of the
base slab if the foundation and structure had no mass, and is a more appropriate motion for

structural response analysis than is the free-field motion.

In the following sections, formulations for transfer functions that account for base slab
averaging and embedment effects are presented. Recommendations are then provided
regarding how transfer functions can be used to modify a free-field response spectrum to

estimate the FIM spectrum for use in nonlinear static procedures.

2.1 SHALLOW FOUNDATIONS AT THE GROUND SURFACE

Base-slab averaging results from inclined or incoherent incident wave fields. In the
presence of those wave fields, translational base-slab motions are reduced relative to the free-
field (rotational motions are also introduced, but are not considered here). The reductions of
base-slab translation tend to become more significant with decreasing period. The period-
dependence of these effects is primarily associated with the increased effective size of the
foundation relative to the seismic wavelengths at low periods. In addition, ground motions

are more incoherent at low periods.

Veletsos and co-workers (1989, 1997) developed useful models for theoretical base slab
averaging that combine an analytical representation of the spatial variation of ground motion
with rigorous treatment of foundation-soil contact. The transfer function amplitudes
computed by the Veletsos group are presented in Figure 1 for circular and rectangular
foundations subject to vertically incident, incoherent shear waves. Similar curves are
available for other wave fields. The transfer functions in Figure 1 are plotted against the

dimensionless frequency parameter a,, defined as follows for circular and rectangular

foundations subject to vertically incident waves, respectively,

wb,x

a, = ka, (circular); a, = (rectangular), (1)

where ay = wr/Vs,, Vs, = strain-reduced shear wave velocity, » = radius of circular
foundation, b, =+/ab , a x b = full footprint dimensions of rectangular foundation, and x = a

ground motion incoherence parameter.
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Figure 1. Amplitude of transfer function between free-field motion and FIM for vertically incident
incoherent waves. Modified from Veletsos and Prasad (1989) and Veletsos et al. (1997).

Kim and Stewart (2003) calibrated Veletsos’ analysis procedure against observed
foundation / free-field ground motion variations as quantified by frequency-dependent
transmissibility function amplitudes, |H|. Veletsos’ models were fit to |H| and apparent x-
values (denoted x;) were fit to the data. Those x;, values reflect not only incoherence effects,
but necessarily also include average foundation flexibility and wave inclination effects for the
calibration data set. The structures in the calibration data set generally have shallow
foundations that are inter-connected (i.e., continuous mats or footings inter-connected with
grade beams). Parameter x, was found to be correlated to average soil shear wave velocity

approximately as follows:

K, =—0.037+0.00074V, or x, ~0.00065V, )

S

where V; = small strain shear wave velocity in m/s. The fact that x; is nearly proportional to
Vs (Eq. 2) causes dimensionless frequency term a, to effectively reduce to a function of
frequency and foundation size (b.). This is shown by the following, which is written for

vertically propagating waves (a, = 0):

5 wb,x wbnV . — wb,n,
) 2n,V,  2n,

s,
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where n; = 6.5 x 10* s/m and n 2 1s the square root of the soil modulus reduction factor, which
can be estimated as shown in Table 1 (BSSC, 2001). In the remainder of this paper, n, will be
taken as 0.65, which is the appropriate value for regions of high seismicity such as coastal
California.

Table 1. Approximate values of 7,
Peak Ground Acceleration (PGA)

0.10g 0.15g 0.20g 0.30g
1 0.90 0.80 0.70 0.65

Limitations of the model calibration by Kim and Stewart (2003), and hence the present
approach, include: (1) foundations should have large in-plane stiffness, ideally a continuous
mat foundation or interconnected footings/grade beams; (2) for non-embedded foundations,
the foundation dimension should be less than 60 m unless the foundation elements are
unusually stiff; (3) the approach should not be used for embedded foundations with e/ > 0.5;
and (4) the approach should not be used for pile-supported structures in which the cap and

soil are not in contact.

2.2 EMBEDDED SHALLOW FOUNDATIONS

Foundation “embedment” refers to a foundation base slab that is positioned at a lower
elevation than the surrounding ground, which will usually occur when buildings have a
basement. When subjected to vertically propagating coherent shear waves, embedded
foundations experience a reduction in base-slab translational motions relative to the free-

field.

Elsabee and Morray (1977) and Day (1978) developed analytical transfer functions
relating base-slab translational motions to free-field translations for an incident wave field
consisting of vertically propagating, coherent shear waves. Base-slab averaging does not
occur within this wave field, but foundation translations are reduced relative to the free-field
due to ground motion reductions with depth and wave scattering effects. Day’s (1978)
analyses were for a uniform elastic half space, while Elsabee and Morray’s (1977) were for a
finite soil layer. Results for both are shown together in Figure 3a for foundation embedment /

radius ratio e/r = 1.0. The primary difference between the two solutions is oscillations in the



finite soil layer case at high frequencies. Also shown in Figure 3a is the following

approximate transfer function amplitude model developed by Elsabee and Morray (1977):

r

|Hu (a))| = cos(E aoj = cos(i/—wJ >0.454 4)

where ap = awr/Vs and e = foundation embedment. Figure 3b shows the transfer function
amplitude model is a somewhat more convenient form in which it is plotted as a unique

function of we/V; (i.e., in this form there is no dependence on foundation radius).
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Figure 3a. Transfer function amplitudes for Figure 3b. Transfer function amplitude
embedded cylinders from Day (1978) and model by Elsabee and Morray (1977)

Elsabee and Morray (1977) along with approximation

The results in Figure 3 can be contrasted with the behavior of a surface foundation, which
would have no reduction of translational motions when subjected to vertically incident
coherent shear waves. Transfer function amplitudes in the presence of more realistic incident
wave fields can be estimated at each frequency by the product of the transfer function
ordinates from Section 2.1 (for base slab averaging) and those from this section at the

corresponding frequency.

The analysis procedure described herein has been verified against recorded motions from

two relatively deeply embedded structures with circular foundations (Kim, 2001).



2.3 APPLICATION OF TRANSFER FUNCTIONS TO CALCULATION OF
SPECTRAL ORDINATES OF FOUNDATION MOTIONS

Design-basis free-field motions are generally specified in terms of acceleration response
spectra. The question addressed in this section is how this spectrum should be modified once
the transfer function amplitude for the site has been evaluated using the analysis procedures

described above.

When free-field motions are specified only as response spectral ordinates, the evaluation
of a modified response spectrum consistent with the FIM is needed. Veletsos and Prasad
(1989) evaluated ratios of foundation / free-field response spectral ordinates (at 2% damping)
for conditions where the corresponding transfer function ordinates could be readily
determined. The transfer function ordinates and ratios of response spectra (RRS) were
compared for an input motion with specified power spectrum and random phase. The results
indicated that transfer function ordinates provide a reasonable estimate of response spectral
ratios for low frequencies (e.g, < 5 Hz), but that at high frequencies (> 10 Hz), transfer
function ordinates are significantly smaller than response spectrum ratios. The inconsistency
at high frequencies is attributed to the low energy content of free-field excitation at high

frequencies and the saturation of spectral ordinates at these frequencies.

The analytical results of Veletsos and Prasad (1989) were checked by (1) calculating the
transfer function for a fixed set of conditions (surface foundation, » = 50 m, V; = 250 m/s),
(2) using this transfer function to modify a set of recorded free-field time histories to
corresponding foundation-level time histories, and (3) evaluating the RRS using the two time
histories. The results are presented in Appendix 8 of FEMA-440 (2004), and suggest that for
ordinary ground motions that Veletsos’s results summarized above are reasonable. However,
it appears that some caution should be exercised for long-period ground motions such as
those encountered on soft soil sites or for near-fault ground motions in the forward directivity

region.

2.4 RECOMMENDED PROCEDURE

Based on the above, the following simplified procedure is recommended for analysis of

kinematic interaction effects:



Step 1: Evaluate effective foundation size b, =+ ab , where a and b are the footprint
dimensions (in feet) of the building foundation in plan view.
Step 2: Evaluate an RRS from base slab averaging (RRSp,) at the period of interest using

Figure 4. The period that should be used in Figure 4 is the effective period of the foundation-

structure system accounting for any lengthening due to foundation flexibility or structural
yielding effects (denoted iq ). An approximate equation to the curves in Figure 4 is

presented below:

1.2
RRS, S |2 (5)
‘ 14100 T,

Step 3:  If the foundation is embedded a depth e from the ground surface, evaluate an
additional RRS from embedment (RRS,) at the period of interest using Figure 5. The period

that should be used is the same as in Step 2. The equation of the curves in Figure 5 is,

21 e 107 e
RRS, =cos| < <cos >0.454 (6)
eq’ s,r s,r

where e = foundation embedment and V, = effective strain-degraded shear wave velocity in
the soil. Factors that can be used to estimate V, from small-strain shear wave velocity V are
given in Table 1.
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Figure 4. RRS,,, from simplified model as Figure 5. RRS, for foundations with variable
function of foundation size, b, depths in NEHRP Site Classes C and D




Step 4: Evaluate the product of RRSp, and RRS, to obtain the total RRS for the period of
interest. The spectral ordinate of the foundation input motion at the period of interest is the

product of the free field spectral ordinate and the total RRS.

Step 5: Repeat Steps 2 through 4 for other periods if desired to generate a complete

spectrum for the foundation input motion.

3.0 FOUNDATION DAMPING

3.1 OVERVIEW

Inertia developed in a vibrating structure gives rise to base shear and moment at the
foundation-soil interface, and these loads in turn cause displacements and rotations of the
structure relative to the free field. These relative displacements and rotations are only
possible because of compliance in the soil, which can significantly contribute to the overall
structural flexibility. Moreover, the difference between the foundation input motion and free
field motion gives rise to energy dissipation via radiation damping and hysteretic soil
damping, and this energy dissipation affects the overall system damping. Since these effects
are rooted in the structural inertia, they are referred to as inertial interaction effects, in

contrast to the kinematic interaction effects discussed in Section 2.0.

Previous design documents (FEMA-356, 2000; ATC-40, 1996) contain provisions for
evaluating the properties of foundation springs (e.g., Sections 10-3 and 10.4 of 4A7C-40), and
hence this aspect of inertial interaction is not emphasized here. Rather, the A7C-55 project
examined the damping component of inertial interaction and the contribution of this damping

to the overall system damping.

In the SSI literature, foundation stiffness and damping are often described in terms of an
impedance function. The impedance function should account for the soil stratigraphy and
foundation stiffness and geometry, and is typically computed using equivalent-linear soil
properties appropriate for the in situ dynamic shear strains. Impedance functions can be
evaluated for multiple independent foundation elements, or (more commonly) a single 6x6
matrix of impedance functions is used to represent the complete foundation (which assumes

foundation rigidity).

A detailed discussion of impedance functions is presented in Appendix 8 of FEMA-440

(2004). In simple terms, impedance functions can be thought of as springs and dashpots at the



base of the foundation that accommodate translational and rotational deformations relative to
the free-field. The coefficients that describe those springs and dashpots are frequency-

dependent. At zero frequency (i.e., static loading), the springs stiffnesses are described by:

8 8 3
K =—G_r,K,=——G
r 17 3(1_0) maxrﬁ

v =5 Gl ™
where subscript 'u' denotes translation and '@ denotes rotation in the vertical plane
(sometimes referred to as rocking); G, = small-strain soil shear modulus (can be calculated
from V; as Gy = Vsz p, where p = mass density); v= Poisson’s ratio of soil; and radius terms
r, and ry are based on the area and moment of inertia, respectively, of the foundation as

follows:

r,=\A 7, =44, (8)
where A= foundation area and /r = foundation moment of inertia. The dashpot coefficients

that describe damping associated with translational and rotational vibrations (¢, and cg

respectively) are given by:

K r K,r
Cu :ﬂu — > CH :ﬂﬁﬂ (9)
VS VS

where £, and Sy are functions of frequency as shown in Figure 6. The curves in Figure 6
apply for a uniform soil medium of infinite depth (i.e., a halfspace) and a rigid, circular

foundation at the ground surface.
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Figure 6. Foundation stiffness and damping factors for elastic halfspace (dotted line) and viscoelastic
halfspace with 10% hysteretic soil damping. Poisson’s ratio v = 0.4. After Veletsos and Verbic (1973)
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The combined effects of translational and rotational dashpots are often expressed by a
foundation damping term S The effects of foundation damping, in turn, on the response of a
structure are represented by a modified damping ratio for the overall structural system. The
initial damping ratio for the structure neglecting foundation damping is referred to as £, and
is generally taken as 5%. The damping ratio of the complete structural system, accounting
for foundation-soil interaction, as well as structural damping, is referred to as f. The change
in damping ratio from f; to £ modifies the elastic response spectrum. The spectral ordinates

are reduced if £y>p.

The calculation of quantity f is the objective of a foundation damping analysis. This

quantity can be calculated from £ and fr using the following expression, which is modified

from Jennings and Bielak (1973), Bielak (1975, 1976), and Veletsos and Nair (1975):

fo =5, +(~L (10)

T@q / Teq )3

where T’eq /T,, represents the period lengthening ratio of the structure in its degraded state
(i.e., including the effects of structural ductility). Accordingly, the analysis of £ reduces to
the evaluation of foundation damping fand period lengthening ratio YN’eq /T,, . The evaluation

of these two quantities is described in the following sub-sections.

3.2 ANALYSIS OF PERIOD LENGTHENING TERM iq /T o

The period lengthening can be evaluated using the structural model employed in pushover
analyses using the procedure that follows (this procedure remains under investigation, and

may deviate slightly from what is ultimately recommended in FEMA 440):

1. Evaluate the first-mode vibration period of the model, including foundation springs.
This period is T . This period is calculated using initial stiffness values (prior to yield

of structural or soil spring elements).

2. Evaluate the first-mode vibration period of the model with the foundation springs
removed (or their stiffness and capacity set to infinity). This period is 7. As before,

this period should correspond to pre-yield conditions.

11



3. Calculate the ratio 7 /T, which is the period lengthening under small-deformation

(elastic) conditions.

4. Calculate 7, /T, using the following equation:

;“’ _ 1+[%J[[§j 1] (11)

where A= average ductility of foundation springs (described further below) and A, =

target ductility level for design of superstructure (typically 2-4). For structures where
the inertial interaction is dominated by rotation (as opposed to foundation translation),
Ar can be calculated as the average ductility of the vertical foundation springs. As
specified by ATC 40 and FEMA 356, these springs are elastic-perfectly plastic, and
the ductility of an individual foundation spring is simply the peak displacement

normalized by the yield displacement. Alternatively, Ar can be approximated as Ar=

(1/n2)*. In many cases, As~ A, and hence Teq /T, = TIT.

3.3 ANALYSIS OF FOUNDATION DAMPING TERM Sr

Foundation damping term f is largest for stiff structures on soft soils, and decreases as
the structure/soil stiffness decreases. Other critical factors include the aspect ratio of the
structure ([ decreases with the ratio of effective structure height to foundation radius, A/r)
and the embedment ratio of the foundation (f increases with the ratio of foundation
embedment to foundation radius, e/r). These factors that influence S also influence the
period lengthening ratio of the structure. Hence, a convenient way to evaluate £ is through
direct relationships with iq /T, . The S —iq /T,, relationship in Figure 7 (left side) was
derived for the condition described in Section 3.1, namely uniform soil and rigid, circular

foundation at the ground surface. The relationship for e/r, = 0.5 (right side) is a modification

for embedment, the basis of which is described below in Section 3.3.2.

An approximate equation to the curves in Figure 7 is presented below for PGA > 0.2 g:

g, =a(, /1,)-1)+a(7, /7., )-1) (12)

where fis in percent and
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a,=c,exp(4.5-h/r,), a,=c,[25In(h/r,)-22],and ¢, =1.5(e/r, )+1 (13)
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Figure 7. Foundation damping factor £ expressed as a function of period lengthening i ” /T, , for

building different aspect ratios (//rg) and embedment ratios (e/r,,).

Since actual soil/foundation conditions differ from those assumed in the development of
Figure 7, guidance is needed in applying this relationship to realistic conditions. This is

provided in the following sub-sections.

3.3.1 Effect of Non-Uniform Soil

Gazetas (1991) provides solutions for the impedance of rigid foundations overlying soil
for which the shear stiffness increases with depth according to prescribed functions. The
damping components of these solutions are plotted in Figure 8 in terms of the £, and Sy
coefficients defined in Eq. 9. Also plotted for comparative purposes are the halfspace
solutions. Damping values for non-uniform profiles are plotted for a zero hysteretic damping
condition (radiation damping only). In Figure 8 the normalizing shear modulus and shear

wave velocity are the values at the ground surface (Gy and ¥, respectively).

Figure 8 shows that the radiation damping in translation for a non-uniform profile is less
than that for a halfspace at low frequencies. For rotation, a small reduction can occur at low
frequencies, but the effect is less significant than for translation. At large frequencies, the

radiation damping for non-uniform profiles exceeds that for the halfspace.
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The low-frequency reduction in damping is due to reflections of body waves emanating
from the foundation; the frequency dependence of the reduction is related to the depth over
which the shear modulus increases relative to wavelength. For short wavelengths (low 7)
body waves, the non-uniform soil medium is “seen” as being effectively uniform, whereas
long wavelength (large 7) body waves “see” a much more non-uniform medium and wave
transmission into the medium is impeded. The increase of radiation damping at high
frequencies is due to the higher Vs of the non-uniform profiles at depth as compared to the

velocity of the halfspace model (for which V was taken as V).

An extreme case of soil non-uniformity is a finite soil layer of thickness H overlying a
rigid base. In this case, soil damping cannot occur for periods larger than the fundamental site

period, Ty = 4H/V.

G(2)/G, G(2)/G,
0 2 4 6 8 or 0 2 4 6 8
0 | 0
. 6@ .
2 v, p 2
N 4 — z N 4 -
6 6 -
ROCKING
0.30 ——
& 0.15
0.00

Figure 8. Foundation damping factors for halfspace with and without hysteretic damping (Veletsos
and Verbic, 1973) and for soil profiles with indicated shear modulus profiles and no hysteretic
damping (Gazetas, 1991).
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Guidelines for practical application of the above results is summarized below:

e For translational damping, profile non-uniformity is not significant for aj=ar/Vs > 1.
Case history studies by Stewart et al. (1999) suggest that inertial soil-structure
interaction is generally not important for 4/(V,T) < 0.1. Hence, for sites where SSI is
important, profile non-uniformity need not be considered if h/r < 2nh/(V,T) or V,T/r <
2n. The condition stated by the inequality is generally satisfied for sites having
significant inertial SSI if 4/r <2/3, which is often the case for short-period buildings.
Accordingly, it is often justified to treat the non-uniform soil as a halfspace, taking

the halfspace velocity as the in situ value immediately below the foundation.

e Rotational damping for a non-uniform profile can generally be reasonably well
estimated by a halfspace model, with the halfspace velocity taken as the in situ value

immediately below the foundation.

e For sites with a finite soil layer overlying a very stiff material, foundation damping

should be neglected for periods greater than the site period.

3.3.2 Effect of Embedment

Foundation embedment refers to a foundation base slab that is positioned at a lower
elevation than the surrounding ground, which will usually occur when buildings have a
basement. The impedance of embedded foundations differs from that of shallow foundations
in several important ways. First, the static stiffness of embedded foundations is increased.
Secondly, embedded foundations can produce much larger damping due to the greater

foundation-soil contact area.

An approximate and generally conservative approach for estimating the damping of
embedded foundations consists of using the increased static stiffness terms coupled with
ordinary £, and Sy factors for surface foundations (i.e., Figure 6). This approach has been
found to provide reasonable estimates of observed foundation damping in actual structures
for embedment ratios e/r, < 0.5 (Stewart et al., 1999). As short period structures are seldom
deeply embedded, this approximate approach will often suffice for practical applications. For
more deeply embedded foundations, alternative formulations can be used such as Bielak
(1975) or Apsel and Luco (1987). The results shown in Figure 7 (right side) are based on this

approximate approach.
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3.3.3 Effect of Foundation Shape

The impedance function model described in Section 3.1 is based on representing
foundations of arbitrary shape as equivalent circular mats through the use of radius terms r,
and rg (Eq. 8). The adequacy of this assumption for oblong foundations was investigated by
Dobry and Gazetas (1986), who found that the use of equivalent circular mats is acceptable
for aspect ratios less than 4:1, with the notable exception of dashpot coefficients in the
rotation mode. For that condition, the translational damping is underestimated at low
frequencies. This effect was neglected in the development of Figure 7, which is

conservative.

3.3.4 Effect of Foundation Non-Rigidity

This section addresses flexibility in the foundation structural system (i.e., the base mat, or
assemblage of a base mat and grade beams/footings). The foundation flexibility referred to

here is not associated with the soil.

Impedance functions for flexible circular foundation slabs supporting shear walls have
been evaluated for a number of wall configurations, including: (1) rigid core walls (Iguchi
and Luco, 1986), (2) thin perimeter walls (Liou and Huang, 1994), and (3) rigid concentric
interior and perimeter walls (Riggs and Waas, 1985). Those studies focused on the effects of
foundation flexibility on rotation impedance; the horizontal impedance of flexible and rigid
foundations are similar (Liou and Huang, 1994). Foundation flexibility effects on rotation
impedance were found to be most significant for a rigid central core with no perimeter walls.
For this case, the flexible foundation has significantly less stiffness and damping than the
rigid foundation. The reductions are most significant for narrow central cores and large

deviations between soil and foundation slab rigidity.

Significant additional work remains to be done on foundation flexibility effects on
impedance functions because the existing research generally has investigated wall/slab
configurations that are seldom encountered in practice for building structures. Nonetheless,
based on the available studies and engineering judgment, the following preliminary

recommendations were developed:
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The rigid foundation assumption is probably generally acceptable for the analysis of
damping associated with horizontal vibrations of reasonably stiff, inter-connected

foundation systems.

For buildings with continuous shear walls or braced frames around the building
perimeter, and continuous footing or mat foundations beneath these walls, the rigid
foundation approximation can be used to provide a reasonable estimate of damping
from rotation vibrations. In this case, the effective foundation radius (79 would be
calculated using the full building dimensions. This recommendation also applies if
continuous basement walls are present around the building perimeter. This case is

referred to as stiff rotational coupling.

For buildings with a core of shear walls within the building, but no shear walls
outside of this core, a conservative estimate of foundation damping can be obtained
by calculating the effective foundation radius (rg) using the dimensions of the wall
foundations (which, in this case, would be smaller than the overall building plan
dimensions). This is an example of soft rotational coupling between the shear walls

and other load bearing elements.

For buildings with distributed shear walls at various locations around the building
plan, the key issues are (1) the rotational stiffness of the building system as a whole
(i.e., does the building tend to rotate as a single rigid block due to significant
rotational stiffness coupling between adjacent elements, or do individual vertical
components such as shear walls rotate independently of each other?), and (2) the
degree to which destructive interference occurs between waves emanating from

rotation of distinct foundation components.

In most cases, rotational coupling between vertical components is limited. In such
cases, when foundation elements are widely spaced, the destructive interference
would be small, and from a conceptual standpoint, it should be possible to evaluate
the effective foundation system moment of inertia (/;.5) by assuming the walls act
independently, as follows:

Iy = Zl i (13)

1
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where I; represents the moment of inertia of an individual wall foundation. The
effective foundation system radius (7, ¢) for rotation would then be calculated using
Irep in Eq. 8. This is an example of soft rotational coupling without destructive
interference. However, when foundations are more closely spaced, destructive
interference will occur and the above formulation may be wunconservative.
Unfortunately, this topic has not been researched, and thus what footing separation
distances constitute “close” and “widely spaced” is unknown, which in turn precludes
the development of recommendations for the analysis of rotation damping for

distributed walls.

If rotational stiffness coupling between vertical elements is large (i.e., they tend to
rotate as a rigid unit, e.g., because of deep spandrel beams between adjacent shear
walls), but the vertical elements have independent footings, then the building has
what is referred to as intermediate rotational coupling. In this case, the moment of

inertia of the coupled elements can be estimated as

Mk

If,i =

J

Il
—_

M
2
4,5] +_Zlff,,» (14)
J=

where I;; = effective moment of inertia of j=1 to M coupled elements, 4; = area of
footing j, y; = normal distance from the centroid of the jth footing to the rotational
axis of the coupled elements, and /;; = moment of inertia of footing ;. If the vertical
elements for the entire building have intermediate rotational coupling, then /;; from
Eq. 14 is the effective moment of inertia for the foundation system as a whole. If the
intermediate rotational coupling only occurs between selected vertical elements, then
I;; from Eq. 14 represents one contribution to the overall effective foundation moment
of inertia, which can be calculated in consideration of all of the elements using Eq. 13

(with due consideration of potential destructive interference effects).

For buildings with only moment resisting frames (no walls or braced frames),
foundation rotation is not likely to be significant, and hence foundation flexibility

effects on rotation damping are also likely insignificant.

3.4 RECOMMENDED PROCEDURE

Step 1: Evaluate effective foundation radii using Eq. 8. The foundation area (4,) for use in

Eq. 8 is the full plan area if foundation elements are interconnected. The evaluation of an
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appropriate moment of inertial (/) is discussed in Section 3.3.4. Determine the foundation

embedment, e, if applicable.

Step 2: Evaluate effective structure height, 4, which is taken as the full height of the
building for one story structures, and as the vertical distance from the foundation to the
centroid of the first mode shape for multi-story structures. In the later case, 4 can often be

well approximated as 70% of the total structure height.

Step 3: Evaluate the period lengthening ratio for the structure using the site-specific

structural model developed for nonlinear pushover analyses. See Section 3.2 for details.

Step 4: Evaluate the initial fixed base damping ratio for the structure (£ ), which is often
taken as 5%.

Step 5: Using Figure 7 and the guidelines in Section 3.3, estimate foundation damping
(B) based on T, » /T ., elr, and h/re..

eq

Step 6: Evaluate the flexible base damping ratio (3,) from fS,, B, and ]N"eq /T,, using

Eq. 10.

Step 7: Evaluate the effect on spectral ordinates of the change in damping ratio from S,
to S, using established models (e.g., Eq. 8-10 of ATC-40; model for use in FEMA 440

remains under investigation).

4.0 CONCLUSIONS

In this paper, we have presented sets of recommendations for incorporating the effects of
kinematic soil-structure interaction and foundation damping into assessments of seismic
demand for use in nonlinear static analysis procedures for building structures. These effects
generally decrease the seismic demand relative to what would be used in current practice,
which is based on 5% structural damping and equivalent foundation and free-field motions.
The demand reduction is greatest at short periods. The recommended procedures are

summarized in Sections 2.4 and 3.4, respectively.
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