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Procedures 
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A soon to be published guidelines document for the design of seismic retrofits 

for existing buildings is based on performance-based design principles as 

implemented through so-called nonlinear static procedures (NSPs). In these 

procedures, the global inelastic deformation demand on the structure is computed 

from the response of an equivalent nonlinear single-degree-of-freedom (SDOF) 

system, the response of which is estimated from that of an elastic SDOF system. 

The guidelines were developed as part of the ATC-55 project, which is 

summarized by Comartin (this conference). The objective of the present paper is 

to describe one component of the ATC-55 project related to the implementation of 

soil-structure interaction (SSI) principles into NSPs. SSI effects are most 

important at short periods (i.e., T less than approximately 0.5 s). Three SSI 

phenomena can contribute to NSPs. First, flexibility at the soil-foundation 

interface can be incorporated into nonlinear pushover curves for the structure. 

These foundation spring models were incorporated into NSPs that pre-existed the 

ATC-55 project, and are not emphasized here. Second, SSI affects demand spectra 

through the effective system damping, which is the damping ratio for which 

spectral ordinates should be calculated. Third, kinematic SSI reduces ordinates of 

the demand spectra. This paper describes how damping and kinematic SSI effects 

have been incorporated into the recommended seismic analysis procedures for 

existing buildings. 
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1.0 INTRODUCTION 

In this paper we present simplified procedures for including the effects of interaction 

between a structure and the supporting soils in nonlinear inelastic seismic analyses. The 

procedures described here were developed as part of the ATC-55 project and will be formally 

presented in FEMA-440 (2004).  

There are three primary categories of soil-structure interaction (SSI) effects. These 

include: introduction of flexibility to the soil-foundation system with resulting lengthening of 

the system’s fundamental response period (flexible foundation effects); filtering of the 

character of ground shaking transmitted to the structure (kinematic effects); and dissipation 

of energy from the soil-structure system through radiation and hysteretic soil damping 

(foundation damping effects).  Current analysis procedures in FEMA 356 (2000) and ATC 40 

(1996) partially address the flexible foundation effect in guidelines for including the stiffness 

and strength of the geotechnical components of the foundation in the structural analysis 

model.  However, those procedures do not address reduction of the shaking demand on the 

structure relative to the free field motion due to kinematic interaction or the foundation 

damping effect.  Guidelines on including those effects in nonlinear inelastic analyses were 

introduced in FEMA-440 and are summarized here. More detailed information can be found 

in Appendix 8 of FEMA-440 (2004). 

2.0 KINEMATIC INTERACTION EFFECTS 

Kinematic interaction results from the presence of stiff foundation elements on or in soil, 

which causes foundation motions to deviate from free-field motions as a result of base slab 

averaging and embedment effects.  The base slab averaging effect can be visualized by 

recognizing that the motion that would have occurred in the absence of the structure within 

and below the footprint of the building is spatially variable. Placement of a foundation slab 

across these variable motions produces an averaging effect in which the foundation motion is 

less than the localized maxima that would have occurred in the free-field. The embedment 

effect is simply associated with the reduction of ground motion that tends to occur with depth 

in a soil deposit.  

This section covers simple models for the analysis of ground motion variations between 

the free-field and the foundation-level of structures. In general, these models must account 

for base slab averaging and embedment effects.  Kinematic interaction for pile-supported 
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foundations is not covered.  Theoretical models for kinematic interaction effects are 

expressed as frequency-dependent ratios of the Fourier amplitudes (i.e., transfer functions) of 

foundation input motion (FIM) to free-field motion. The FIM is the theoretical motion of the 

base slab if the foundation and structure had no mass, and is a more appropriate motion for 

structural response analysis than is the free-field motion.  

In the following sections, formulations for transfer functions that account for base slab 

averaging and embedment effects are presented. Recommendations are then provided 

regarding how transfer functions can be used to modify a free-field response spectrum to 

estimate the FIM spectrum for use in nonlinear static procedures. 

2.1 SHALLOW FOUNDATIONS AT THE GROUND SURFACE 

Base-slab averaging results from inclined or incoherent incident wave fields. In the 

presence of those wave fields, translational base-slab motions are reduced relative to the free-

field (rotational motions are also introduced, but are not considered here). The reductions of 

base-slab translation tend to become more significant with decreasing period. The period-

dependence of these effects is primarily associated with the increased effective size of the 

foundation relative to the seismic wavelengths at low periods. In addition, ground motions 

are more incoherent at low periods. 

Veletsos and co-workers (1989, 1997) developed useful models for theoretical base slab 

averaging that combine an analytical representation of the spatial variation of ground motion 

with rigorous treatment of foundation-soil contact. The transfer function amplitudes 

computed by the Veletsos group are presented in Figure 1 for circular and rectangular 

foundations subject to vertically incident, incoherent shear waves. Similar curves are 

available for other wave fields. The transfer functions in Figure 1 are plotted against the 

dimensionless frequency parameter 0
~a , defined as follows for circular and rectangular 

foundations subject to vertically incident waves, respectively, 

 00
~ aa κ=  (circular); 

rs

e
o V

b
a

,2
~ κω

=  (rectangular), (1) 

where a0 = ωr/Vs,r, Vs,r = strain-reduced shear wave velocity, r = radius of circular 

foundation, abbe = , a × b = full footprint dimensions of rectangular foundation, and κ = a 

ground motion incoherence parameter. 
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Figure 1. Amplitude of transfer function between free-field motion and FIM for vertically incident 
incoherent waves. Modified from Veletsos and Prasad (1989) and Veletsos et al. (1997). 

Kim and Stewart (2003) calibrated Veletsos’ analysis procedure against observed 

foundation / free-field ground motion variations as quantified by frequency-dependent 

transmissibility function amplitudes, |H|. Veletsos’ models were fit to |H| and apparent κ-

values (denoted κa) were fit to the data. Those κa values reflect not only incoherence effects, 

but necessarily also include average foundation flexibility and wave inclination effects for the 

calibration data set. The structures in the calibration data set generally have shallow 

foundations that are inter-connected (i.e., continuous mats or footings inter-connected with 

grade beams).  Parameter κa was found to be correlated to average soil shear wave velocity 

approximately as follows: 

 sa V00074.0037.0 +−=κ  or sa V00065.0≈κ  (2) 

where Vs = small strain shear wave velocity in m/s. The fact that κa is nearly proportional to 

Vs (Eq. 2) causes dimensionless frequency term 0
~a  to effectively reduce to a function of 

frequency and foundation size (be). This is shown by the following, which is written for 

vertically propagating waves (αv = 0): 
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where n1 ≈ 6.5 × 10-4 s/m and n2 is the square root of the soil modulus reduction factor, which 

can be estimated as shown in Table 1 (BSSC, 2001). In the remainder of this paper, n2 will be 

taken as 0.65, which is the appropriate value for regions of high seismicity such as coastal 

California. 

Table 1. Approximate values of n2 
 Peak Ground Acceleration (PGA) 

 0.10g 0.15g 0.20g 0.30g 

n2 0.90 0.80 0.70 0.65 

 

Limitations of the model calibration by Kim and Stewart (2003), and hence the present 

approach, include: (1) foundations should have large in-plane stiffness, ideally a continuous 

mat foundation or interconnected footings/grade beams; (2) for non-embedded foundations, 

the foundation dimension should be less than 60 m unless the foundation elements are 

unusually stiff; (3) the approach should not be used for embedded foundations with e/r > 0.5; 

and (4) the approach should not be used for pile-supported structures in which the cap and 

soil are not in contact. 

2.2 EMBEDDED SHALLOW FOUNDATIONS 

Foundation “embedment” refers to a foundation base slab that is positioned at a lower 

elevation than the surrounding ground, which will usually occur when buildings have a 

basement. When subjected to vertically propagating coherent shear waves, embedded 

foundations experience a reduction in base-slab translational motions relative to the free-

field.  

Elsabee and Morray (1977) and Day (1978) developed analytical transfer functions 

relating base-slab translational motions to free-field translations for an incident wave field 

consisting of vertically propagating, coherent shear waves. Base-slab averaging does not 

occur within this wave field, but foundation translations are reduced relative to the free-field 

due to ground motion reductions with depth and wave scattering effects. Day’s (1978) 

analyses were for a uniform elastic half space, while Elsabee and Morray’s (1977) were for a 

finite soil layer. Results for both are shown together in Figure 3a for foundation embedment / 

radius ratio e/r = 1.0. The primary difference between the two solutions is oscillations in the 
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finite soil layer case at high frequencies. Also shown in Figure 3a is the following 

approximate transfer function amplitude model developed by Elsabee and Morray (1977): 

 ( ) 454.0coscos 0 ≥







=






=

s
u V

ea
r
eH ωω  (4) 

where a0 = ωr/Vs and e = foundation embedment. Figure 3b shows the transfer function 

amplitude model is a somewhat more convenient form in which it is plotted as a unique 

function of ωe/Vs (i.e., in this form there is no dependence on foundation radius).   
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Figure 3a. Transfer function amplitudes for   Figure 3b. Transfer function amplitude 
embedded cylinders from Day (1978) and   model by Elsabee and Morray (1977) 
Elsabee and Morray (1977) along with approximation 

The results in Figure 3 can be contrasted with the behavior of a surface foundation, which 

would have no reduction of translational motions when subjected to vertically incident 

coherent shear waves. Transfer function amplitudes in the presence of more realistic incident 

wave fields can be estimated at each frequency by the product of the transfer function 

ordinates from Section 2.1 (for base slab averaging) and those from this section at the 

corresponding frequency. 

The analysis procedure described herein has been verified against recorded motions from 

two relatively deeply embedded structures with circular foundations (Kim, 2001).  
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2.3 APPLICATION OF TRANSFER FUNCTIONS TO CALCULATION OF 

SPECTRAL ORDINATES OF FOUNDATION MOTIONS 

Design-basis free-field motions are generally specified in terms of acceleration response 

spectra. The question addressed in this section is how this spectrum should be modified once 

the transfer function amplitude for the site has been evaluated using the analysis procedures 

described above.  

When free-field motions are specified only as response spectral ordinates, the evaluation 

of a modified response spectrum consistent with the FIM is needed. Veletsos and Prasad 

(1989) evaluated ratios of foundation / free-field response spectral ordinates (at 2% damping) 

for conditions where the corresponding transfer function ordinates could be readily 

determined. The transfer function ordinates and ratios of response spectra (RRS) were 

compared for an input motion with specified power spectrum and random phase. The results 

indicated that transfer function ordinates provide a reasonable estimate of response spectral 

ratios for low frequencies (e.g, < 5 Hz), but that at high frequencies (≥ 10 Hz), transfer 

function ordinates are significantly smaller than response spectrum ratios. The inconsistency 

at high frequencies is attributed to the low energy content of free-field excitation at high 

frequencies and the saturation of spectral ordinates at these frequencies.  

The analytical results of Veletsos and Prasad (1989) were checked by (1) calculating the 

transfer function for a fixed set of conditions (surface foundation, r = 50 m, Vs = 250 m/s), 

(2) using this transfer function to modify a set of recorded free-field time histories to 

corresponding foundation-level time histories, and (3) evaluating the RRS using the two time 

histories. The results are presented in Appendix 8 of FEMA-440 (2004), and suggest that for 

ordinary ground motions that Veletsos’s results summarized above are reasonable. However, 

it appears that some caution should be exercised for long-period ground motions such as 

those encountered on soft soil sites or for near-fault ground motions in the forward directivity 

region. 

2.4 RECOMMENDED PROCEDURE 

Based on the above, the following simplified procedure is recommended for analysis of 

kinematic interaction effects: 



 

 
8

Step 1: Evaluate effective foundation size abbe = , where a and b are the footprint 

dimensions (in feet) of the building foundation in plan view.  

Step 2: Evaluate an RRS from base slab averaging (RRSbsa) at the period of interest using 

Figure 4. The period that should be used in Figure 4 is the effective period of the foundation-

structure system accounting for any lengthening due to foundation flexibility or structural 

yielding effects (denoted eqT~ ).  An approximate equation to the curves in Figure 4 is 

presented below: 

 
2.1

~14100
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Step 3: If the foundation is embedded a depth e from the ground surface, evaluate an 

additional RRS from embedment (RRSe) at the period of interest using Figure 5. The period 

that should be used is the same as in Step 2. The equation of the curves in Figure 5 is, 
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where e =  foundation embedment and Vs,r = effective strain-degraded shear wave velocity in 

the soil. Factors that can be used to estimate Vs,r from small-strain shear wave velocity Vs are 

given in Table 1.  
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Figure 4. RRSbsa from simplified model as  Figure 5. RRSe for foundations with variable 
function of foundation size, be    depths in NEHRP Site Classes C and D 
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Step 4: Evaluate the product of RRSbsa and RRSe to obtain the total RRS for the period of 

interest.  The spectral ordinate of the foundation input motion at the period of interest is the 

product of the free field spectral ordinate and the total RRS. 

Step 5: Repeat Steps 2 through 4 for other periods if desired to generate a complete 

spectrum for the foundation input motion. 

3.0 FOUNDATION DAMPING 

3.1 OVERVIEW 

Inertia developed in a vibrating structure gives rise to base shear and moment at the 

foundation-soil interface, and these loads in turn cause displacements and rotations of the 

structure relative to the free field.  These relative displacements and rotations are only 

possible because of compliance in the soil, which can significantly contribute to the overall 

structural flexibility.  Moreover, the difference between the foundation input motion and free 

field motion gives rise to energy dissipation via radiation damping and hysteretic soil 

damping, and this energy dissipation affects the overall system damping.  Since these effects 

are rooted in the structural inertia, they are referred to as inertial interaction effects, in 

contrast to the kinematic interaction effects discussed in Section 2.0.  

Previous design documents (FEMA-356, 2000; ATC-40, 1996) contain provisions for 

evaluating the properties of foundation springs (e.g., Sections 10-3 and 10.4 of ATC-40), and 

hence this aspect of inertial interaction is not emphasized here. Rather, the ATC-55 project 

examined the damping component of inertial interaction and the contribution of this damping 

to the overall system damping.  

In the SSI literature, foundation stiffness and damping are often described in terms of an 

impedance function.  The impedance function should account for the soil stratigraphy and 

foundation stiffness and geometry, and is typically computed using equivalent-linear soil 

properties appropriate for the in situ dynamic shear strains. Impedance functions can be 

evaluated for multiple independent foundation elements, or (more commonly) a single 6×6 

matrix of impedance functions is used to represent the complete foundation (which assumes 

foundation rigidity).  

A detailed discussion of impedance functions is presented in Appendix 8 of FEMA-440 

(2004). In simple terms, impedance functions can be thought of as springs and dashpots at the 
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base of the foundation that accommodate translational and rotational deformations relative to 

the free-field. The coefficients that describe those springs and dashpots are frequency-

dependent. At zero frequency (i.e., static loading), the springs stiffnesses are described by: 

 uu rGK max2
8

υ−
= , ( )

3
max13

8
θθ υ

rGK
−

=  (7) 

where subscript 'u' denotes translation and 'θ' denotes rotation in the vertical plane 

(sometimes referred to as rocking); Gmax = small-strain soil shear modulus (can be calculated 

from Vs as Gmax = Vs
2ρ, where ρ = mass density); ν = Poisson’s ratio of soil; and radius terms 

ru and rθ are based on the area and moment of inertia, respectively, of the foundation as 

follows: 

 πfu Ar = , 4 4 πθ fIr =  (8) 

where Af = foundation area and If = foundation moment of inertia. The dashpot coefficients 

that describe damping associated with translational and rotational vibrations (cu and cθ, 

respectively) are given by: 
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where βu and βθ are functions of frequency as shown in Figure 6. The curves in Figure 6 

apply for a uniform soil medium of infinite depth (i.e., a halfspace) and a rigid, circular 

foundation at the ground surface.  
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Figure 6. Foundation stiffness and damping factors for elastic halfspace (dotted line) and viscoelastic 
halfspace with 10% hysteretic soil damping. Poisson’s ratio υ = 0.4. After Veletsos and Verbic (1973) 
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The combined effects of translational and rotational dashpots are often expressed by a 

foundation damping term βf. The effects of foundation damping, in turn, on the response of a 

structure are represented by a modified damping ratio for the overall structural system.  The 

initial damping ratio for the structure neglecting foundation damping is referred to as βi, and 

is generally taken as 5%.  The damping ratio of the complete structural system, accounting 

for foundation-soil interaction, as well as structural damping, is referred to as β0.  The change 

in damping ratio from βi to β0 modifies the elastic response spectrum.  The spectral ordinates 

are reduced if β0 >βi.   

The calculation of quantity β0 is the objective of a foundation damping analysis. This 

quantity can be calculated from βi and βf using the following expression, which is modified 

from Jennings and Bielak (1973), Bielak (1975, 1976), and Veletsos and Nair (1975): 

 
( )30 ~

eqeq

i
f

TT

β
ββ +=  (10) 

where eqeq TT /~  represents the period lengthening ratio of the structure in its degraded state 

(i.e., including the effects of structural ductility). Accordingly, the analysis of β0 reduces to 

the evaluation of foundation damping βf and period lengthening ratio eqeq TT /~ . The evaluation 

of these two quantities is described in the following sub-sections.  

3.2 ANALYSIS OF PERIOD LENGTHENING TERM eqeq TT /~
 

The period lengthening can be evaluated using the structural model employed in pushover 

analyses using the procedure that follows (this procedure remains under investigation, and 

may deviate slightly from what is ultimately recommended in FEMA 440): 

1. Evaluate the first-mode vibration period of the model, including foundation springs. 

This period is T~ . This period is calculated using initial stiffness values (prior to yield 

of structural or soil spring elements).  

2. Evaluate the first-mode vibration period of the model with the foundation springs 

removed (or their stiffness and capacity set to infinity). This period is T. As before, 

this period should correspond to pre-yield conditions.  
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3. Calculate the ratio TT /~ , which is the period lengthening under small-deformation 

(elastic) conditions.  

4. Calculate eqeq TT /~  using the following equation: 
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where ∆f = average ductility of foundation springs (described further below) and ∆s = 

target ductility level for design of superstructure (typically 2-4). For structures where 

the inertial interaction is dominated by rotation (as opposed to foundation translation), 

∆f can be calculated as the average ductility of the vertical foundation springs. As 

specified by ATC 40 and FEMA 356, these springs are elastic-perfectly plastic, and 

the ductility of an individual foundation spring is simply the peak displacement 

normalized by the yield displacement. Alternatively, ∆f can be approximated as ∆f ≈ 

(1/n2)2. In many cases, ∆f ≈ ∆s, and hence eqeq TT /~  ≈ TT /~ .  

3.3 ANALYSIS OF FOUNDATION DAMPING TERM βF 

Foundation damping term βf is largest for stiff structures on soft soils, and decreases as 

the structure/soil stiffness decreases. Other critical factors include the aspect ratio of the 

structure (βf decreases with the ratio of effective structure height to foundation radius, h/r) 

and the embedment ratio of the foundation (βf increases with the ratio of foundation 

embedment to foundation radius, e/r). These factors that influence βf also influence the 

period lengthening ratio of the structure. Hence, a convenient way to evaluate βf is through 

direct relationships with eqeq TT /~ . The βf - eqeq TT /~  relationship in Figure 7 (left side) was 

derived for the condition described in Section 3.1, namely uniform soil and rigid, circular 

foundation at the ground surface. The relationship for e/ru = 0.5 (right side) is a modification 

for embedment, the basis of which is described below in Section 3.3.2.  

An approximate equation to the curves in Figure 7 is presented below for PGA > 0.2 g: 

 ( )( ) ( )( )2
21 1~1~ −+−= eqeqeqeqf TTaTTaβ  (12) 

where βf is in percent and  
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 ( )θrhca e /5.4exp1 −= , ( )[ ]22/ln252 −= θrhca e , and ( ) 1/5.1 += ue rec  (13) 
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Figure 7. Foundation damping factor βf  expressed as a function of period lengthening eqeq TT /~

 for 
building different aspect ratios (h/rθ) and embedment ratios (e/ru). 

Since actual soil/foundation conditions differ from those assumed in the development of 

Figure 7, guidance is needed in applying this relationship to realistic conditions. This is 

provided in the following sub-sections.  

3.3.1 Effect of Non-Uniform Soil 

Gazetas (1991) provides solutions for the impedance of rigid foundations overlying soil 

for which the shear stiffness increases with depth according to prescribed functions. The 

damping components of these solutions are plotted in Figure 8 in terms of the βu and βθ 

coefficients defined in Eq. 9. Also plotted for comparative purposes are the halfspace 

solutions. Damping values for non-uniform profiles are plotted for a zero hysteretic damping 

condition (radiation damping only). In Figure 8 the normalizing shear modulus and shear 

wave velocity are the values at the ground surface (G0 and Vs0, respectively).  

Figure 8 shows that the radiation damping in translation for a non-uniform profile is less 

than that for a halfspace at low frequencies. For rotation, a small reduction can occur at low 

frequencies, but the effect is less significant than for translation. At large frequencies, the 

radiation damping for non-uniform profiles exceeds that for the halfspace.  
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The low-frequency reduction in damping is due to reflections of body waves emanating 

from the foundation; the frequency dependence of the reduction is related to the depth over 

which the shear modulus increases relative to wavelength. For short wavelengths (low T) 

body waves, the non-uniform soil medium is “seen” as being effectively uniform, whereas 

long wavelength (large T) body waves “see” a much more non-uniform medium and wave 

transmission into the medium is impeded. The increase of radiation damping at high 

frequencies is due to the higher Vs of the non-uniform profiles at depth as compared to the 

velocity of the halfspace model (for which Vs was taken as Vs0).  

An extreme case of soil non-uniformity is a finite soil layer of thickness H overlying a 

rigid base. In this case, soil damping cannot occur for periods larger than the fundamental site 

period, Ts = 4H/Vs.  
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Figure 8. Foundation damping factors for halfspace with and without hysteretic damping (Veletsos 
and Verbic, 1973) and for soil profiles with indicated shear modulus profiles and no hysteretic 
damping (Gazetas, 1991).  
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Guidelines for practical application of the above results is summarized below: 

• For translational damping, profile non-uniformity is not significant for a0=ωr/Vs > 1. 

Case history studies by Stewart et al. (1999) suggest that inertial soil-structure 

interaction is generally not important for h/(VsT) < 0.1. Hence, for sites where SSI is 

important, profile non-uniformity need not be considered if h/r < 2πh/(VsT) or VsT/r < 

2π.  The condition stated by the inequality is generally satisfied for sites having 

significant inertial SSI if h/r < 2/3, which is often the case for short-period buildings. 

Accordingly, it is often justified to treat the non-uniform soil as a halfspace, taking 

the halfspace velocity as the in situ value immediately below the foundation.  

• Rotational damping for a non-uniform profile can generally be reasonably well 

estimated by a halfspace model, with the halfspace velocity taken as the in situ value 

immediately below the foundation. 

• For sites with a finite soil layer overlying a very stiff material, foundation damping 

should be neglected for periods greater than the site period.  

3.3.2 Effect of Embedment 

Foundation embedment refers to a foundation base slab that is positioned at a lower 

elevation than the surrounding ground, which will usually occur when buildings have a 

basement. The impedance of embedded foundations differs from that of shallow foundations 

in several important ways. First, the static stiffness of embedded foundations is increased. 

Secondly, embedded foundations can produce much larger damping due to the greater 

foundation-soil contact area.  

An approximate and generally conservative approach for estimating the damping of 

embedded foundations consists of using the increased static stiffness terms coupled with 

ordinary βu and βθ factors for surface foundations (i.e., Figure 6). This approach has been 

found to provide reasonable estimates of observed foundation damping in actual structures 

for embedment ratios e/ru < 0.5 (Stewart et al., 1999). As short period structures are seldom 

deeply embedded, this approximate approach will often suffice for practical applications. For 

more deeply embedded foundations, alternative formulations can be used such as Bielak 

(1975) or Apsel and Luco (1987). The results shown in Figure 7 (right side) are based on this 

approximate approach.  
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3.3.3 Effect of Foundation Shape 

The impedance function model described in Section 3.1 is based on representing 

foundations of arbitrary shape as equivalent circular mats through the use of radius terms ru 

and rθ (Eq. 8). The adequacy of this assumption for oblong foundations was investigated by 

Dobry and Gazetas (1986), who found that the use of equivalent circular mats is acceptable 

for aspect ratios less than 4:1, with the notable exception of dashpot coefficients in the 

rotation mode. For that condition, the translational damping is underestimated at low 

frequencies.  This effect was neglected in the development of Figure 7, which is 

conservative.  

3.3.4 Effect of Foundation Non-Rigidity 

This section addresses flexibility in the foundation structural system (i.e., the base mat, or 

assemblage of a base mat and grade beams/footings). The foundation flexibility referred to 

here is not associated with the soil.  

Impedance functions for flexible circular foundation slabs supporting shear walls have 

been evaluated for a number of wall configurations, including:  (1) rigid core walls (Iguchi 

and Luco, 1986), (2) thin perimeter walls (Liou and Huang, 1994), and (3) rigid concentric 

interior and perimeter walls (Riggs and Waas, 1985).  Those studies focused on the effects of 

foundation flexibility on rotation impedance; the horizontal impedance of flexible and rigid 

foundations are similar (Liou and Huang, 1994).  Foundation flexibility effects on rotation 

impedance were found to be most significant for a rigid central core with no perimeter walls.  

For this case, the flexible foundation has significantly less stiffness and damping than the 

rigid foundation.  The reductions are most significant for narrow central cores and large 

deviations between soil and foundation slab rigidity.  

Significant additional work remains to be done on foundation flexibility effects on 

impedance functions because the existing research generally has investigated wall/slab 

configurations that are seldom encountered in practice for building structures. Nonetheless, 

based on the available studies and engineering judgment, the following preliminary 

recommendations were developed: 



 

 
17

• The rigid foundation assumption is probably generally acceptable for the analysis of 

damping associated with horizontal vibrations of reasonably stiff, inter-connected 

foundation systems. 

• For buildings with continuous shear walls or braced frames around the building 

perimeter, and continuous footing or mat foundations beneath these walls, the rigid 

foundation approximation can be used to provide a reasonable estimate of damping 

from rotation vibrations. In this case, the effective foundation radius (rθ) would be 

calculated using the full building dimensions. This recommendation also applies if 

continuous basement walls are present around the building perimeter. This case is 

referred to as stiff rotational coupling.  

• For buildings with a core of shear walls within the building, but no shear walls 

outside of this core, a conservative estimate of foundation damping can be obtained 

by calculating the effective foundation radius (rθ) using the dimensions of the wall 

foundations (which, in this case, would be smaller than the overall building plan 

dimensions). This is an example of soft rotational coupling between the shear walls 

and other load bearing elements.  

• For buildings with distributed shear walls at various locations around the building 

plan, the key issues are (1) the rotational stiffness of the building system as a whole 

(i.e., does the building tend to rotate as a single rigid block due to significant 

rotational stiffness coupling between adjacent elements, or do individual vertical 

components such as shear walls rotate independently of each other?), and (2) the 

degree to which destructive interference occurs between waves emanating from 

rotation of distinct foundation components.  

In most cases, rotational coupling between vertical components is limited. In such 

cases, when foundation elements are widely spaced, the destructive interference 

would be small, and from a conceptual standpoint, it should be possible to evaluate 

the effective foundation system moment of inertia (If,eff) by assuming the walls act 

independently, as follows: 

 ∑=
i

ifefff II ,,  (13) 
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where If,i represents the moment of inertia of an individual wall foundation. The 

effective foundation system radius (r�,eff) for rotation would then be calculated using 

If,eff in Eq.  8. This is an example of soft rotational coupling without destructive 

interference.  However, when foundations are more closely spaced, destructive 

interference will occur and the above formulation may be unconservative. 

Unfortunately, this topic has not been researched, and thus what footing separation 

distances constitute “close” and “widely spaced” is unknown, which in turn precludes 

the development of recommendations for the analysis of rotation damping for 

distributed walls.  

If rotational stiffness coupling between vertical elements is large (i.e., they tend to 

rotate as a rigid unit, e.g., because of deep spandrel beams between adjacent shear 

walls), but the vertical elements have independent footings, then the building has 

what is referred to as intermediate rotational coupling. In this case, the moment of 

inertia of the coupled elements can be estimated as  

 ∑∑
==

+=
M

j
jf

M

j
jjif IyAI

1
,

1

2
,  (14) 

where If,i = effective moment of inertia of j=1 to M coupled elements, Aj = area of 

footing j, yj = normal distance from the centroid of the jth footing to the rotational 

axis of the coupled elements, and If,j = moment of inertia of footing j. If the vertical 

elements for the entire building have intermediate rotational coupling, then If,i from 

Eq. 14 is the effective moment of inertia for the foundation system as a whole. If the 

intermediate rotational coupling only occurs between selected vertical elements, then 

If,i from Eq. 14 represents one contribution to the overall effective foundation moment 

of inertia, which can be calculated in consideration of all of the elements using Eq. 13 

(with due consideration of potential destructive interference effects).  

For buildings with only moment resisting frames (no walls or braced frames), 

foundation rotation is not likely to be significant, and hence foundation flexibility 

effects on rotation damping are also likely insignificant. 

3.4 RECOMMENDED PROCEDURE 

Step 1: Evaluate effective foundation radii using Eq. 8. The foundation area (Af) for use in 

Eq. 8 is the full plan area if foundation elements are interconnected. The evaluation of an 
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appropriate moment of inertial (If) is discussed in Section 3.3.4. Determine the foundation 

embedment, e, if applicable.  

Step 2: Evaluate effective structure height, h, which is taken as the full height of the 

building for one story structures, and as the vertical distance from the foundation to the 

centroid of the first mode shape for multi-story structures. In the later case, h can often be 

well approximated as 70% of the total structure height.  

Step 3: Evaluate the period lengthening ratio for the structure using the site-specific 

structural model developed for nonlinear pushover analyses. See Section 3.2 for details.  

Step 4: Evaluate the initial fixed base damping ratio for the structure (βi ), which is often 

taken as 5%.  

Step 5: Using Figure 7 and the guidelines in Section 3.3, estimate foundation damping 

(βf) based on eqeq TT /~ , e/ru, and h/rθ..  

Step 6: Evaluate the flexible base damping ratio ( 0β ) from fβ , iβ , and eqeq TT /~  using 

Eq. 10. 

Step 7: Evaluate the effect on spectral ordinates of the change in damping ratio from iβ  

to oβ  using established models (e.g., Eq. 8-10 of ATC-40; model for use in FEMA 440 

remains under investigation).   

4.0 CONCLUSIONS 

In this paper, we have presented sets of recommendations for incorporating the effects of 

kinematic soil-structure interaction and foundation damping into assessments of seismic 

demand for use in nonlinear static analysis procedures for building structures. These effects 

generally decrease the seismic demand relative to what would be used in current practice, 

which is based on 5% structural damping and equivalent foundation and free-field motions. 

The demand reduction is greatest at short periods. The recommended procedures are 

summarized in Sections 2.4 and 3.4, respectively.  
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